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Abstract Novel triazole-based aluminum complex {O,O0-[4,5-P(O)Ph2tz]-AlMe2

was studied as the catalyst for the ring-opening polymerization of caprolactone

(e-CL) in chlorobenzene. In the presence of methanol, isopropanol, and bifunctional

poly(ethylene glycol), the catalytic system produced polymers with high conversion

(81–85 %) but broader distribution (Mw/Mn = 1.5–1.8). The system of catalyst and

benzyl alcohol produced relative monodisperse PCLs (Mw/Mn * 1.2) with defined

molecular weight at 1/1ratio, 60 �C and an initial concentration of e-CL equal to

0.5 mol/L.

Keywords Aluminum � Polycaprolactone � Ring-opening polymerization

Introduction

Biodegradable and biocompatible aliphatic polyesters have played a leading role in

specialty biomedical and pharmaceutical polymer applications such as resorbable

implant materials and drug delivery systems (DDS) namely since the control of their

degradation rate through the composition and processing can be realized [1, 2].

From this point of view, the availability of suitable synthetic method producing

polymers of the required molecular weight (according to monomer to initiator ratio)

and defined chain end groups is of the utmost importance. Polymerization of

di/lactones via ring-opening polyaddition (ROP) mechanism has been known as a
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synthetic strategy enabling fine tailoring the physico-chemical properties of

polyester products [3]. Among important ROP initiators, aluminum alkoxides are

particularly interesting especially because of their high selectivity, polymerization

efficiency, and ability to produce the polyesters having both defined and predictable

end groups. Besides classical coordination initiators based on aluminum isoprop-

oxides [Al(O-i-Pr)3] and bimetallic l-oxo-alkoxides [4, 5] reported by Teyssié et al.,

a series of aluminum alkoxides (aryloxides) modified by ancillary ligands with

various electronic and steric characteristics having a significant influence on the

polymerization performance have been developed. Monodisperse polyesters were

produced by monomeric [6] and dimeric Al complexes with O,O-bidentate ligands

[7–9], (porfinato)aluminum alkoxides with N,N,N,N-donor atoms [10], Al com-

plexes with O,N,N-tridentate [11], O,O,N-tridentate [12] or O,O,N,N-tetradentate

ligands [13, 14], and phenoxyimine aluminum complexes with N,O-bidentate

ligands [15–17].

The objective of our work was to study the polymerization behavior of a novel

aluminum complex with O,O-bidentate ligand sphere; {O,O0-[4,5-P(O)Ph2tz]-

AlMe2} denoted as 1 for e-caprolactone polymerization.

Experimental

All manipulations were carried out under a dry nitrogen atmosphere (99.999%, Siad,

CZ) using vacuum/inert manifold and standard Schlenk techniques. Chlorobenzene

(p.a.) and e-caprolactone (e-CL) supplied by Lach-ner, CZ were purified with

calcium hydride and freshly distilled prior to use. Anhydrous benzyl alcohol

(BnOH, 99.8%), anhydrous methanol (MeOH, 99.8%), and anhydrous isopropanol

(iPrOH, 99.5%) supplied by Aldrich, tetrahydrofuran (THF, p.a) supplied by Lach-

ner, CZ, and deuterochloroform (CDCl3, 99.8%) supplied by Isosar, CZ were used

without further purification. Poly(ethylene glycol) 400 (PEG, bifunctional,

Mn = 400, Fluka) was degassed at 130 �C for 8 h under vacuum prior to use.

{O,O0-[4,5-P(O)Ph2tz]-AlMe2} denoted as 1 was synthesized by Dr. Moya-

Cabrera’s group according to the published procedure [18].

Typical polymerization procedure

Polymerization reactions were carried out in a double-neck glass Schlenk flask

(25 mL) with a magnetic stirring bar. To the flask containing the solution of

aluminum complex 1 in chlorobenzene, the nucleophilic agent as benzyl alcohol

(BnOH), methanol (MeOH), isopropanol (iPrOH), and poly(ethylene glycol) 400

(OH-PEG-OH) were added via microsyringe and the solution was stirred (600 rpm/

min) for 30 min to form initiating species (I). The dosing for a particular run was as

follows: 1 (31 lmol, 16 mg) and BnOH (31 lmol, 3.3 mg); 1 (42 lmol, 22 mg) and

MeOH (42 lmol, 1.3 mg); 1 (23 lmol, 12 mg) and iPrOH (23 lmol, 1.4 mg), 1
(29 lmol, 15 mg) and OH-PEG-OH (29 lmol, 11.4 mg).

Afterward, a defined amount of e-CL ([e-CL]0/[I]0 = 200) was added keeping the

ratio of solvent to monomer equal to 10 and the mixture was stirred at constant
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temperature (50, 60, and 70 �C). The polymerization reaction was quenched after

the prescribed time (6, 8 h) by adding a few drops of an acetic acid solution. The

polymerization mixture obtained was poured into cold methanol (-10 �C) and the

white precipitate formed was collected by filtration and dried under vacuum until a

constant weight was obtained. The crude product was purified three times by

dissolving in THF and precipitating in cold methanol (-10 �C).

Polymer characterization

1H NMR spectra of the polymers were measured in CDCl3 on Bruker Avance

300 MHz equipment. The chemical shift was determined with respect to residual

proton signals from CDCl3. Gel permeation chromatography (GPC) was performed

on Agilent Technologies 1100 Series instrument equipped with a refractive index

(RI) detector, two PL gel Mixed columns 300 9 7.5 mm with particle size of 5 lm

using THF as an eluent at a flow rate of 1 mL/min. Molecular weight and molecular

weight distribution were calculated using a series of polystyrene standards

(Mp = 316500 - 162).

Results and discussion

Within this work, we studied the catalytic efficiency of the novel triazole-based

aluminum complex (1) for the ring-opening polymerization (ROP) of e-caprolac-

tone. A series of polymerization runs was carried out using 1 as the catalyst and

different alcohols with well-known ROP initiator properties; methanol, isopropanol,

benzyl alcohol, and the macroinitiator—bifunctional poly(ethylene glycol) at 60 �C

in chlorobenzene. The 1H NMR spectra of synthesized PCLs are presented in

Figs. 1, 2, 3, 4.

Fig. 1 1H NMR spectrum of
PCL produced by 1/MeOH in
CDCl3; polymerization
conditions: 60 �C,
chlorobenzene, 8 h. P(e-CL)
d = 1.37 ppm [m, 2H,
(–CH2–)], d = 1.64 ppm
[m, 4H, (–CH2–)],
d = 2.30 ppm [t, 2H,
(–CH2CO–)], d = 3.62 ppm
[t, 2H, (–CH2OH)],
d = 3.67 ppm [s, 2H, (CH3O–)],
d = 4.05 ppm [t, 2H,
(–CH2O–)]
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Based on the results obtained (Table 1), one can suggest that the influence of the

steric hindrance of a particular alkoxide ligand, has a significant impact on the

activity of catalytic species, compared to its electronic contribution as a Lewis

acidic center. Thus, both 1/MeOH and 1/iPrOH formed effective ROP catalytic

systems with the monomer conversion of 81–88% after a polymerization period of

8 h. For 1/OH-PEG-OH, a prolonged period of 20 h was necessary to reach a

comparable conversion of 85 %. Based on well correlation between theoretical and

experimental molecular weight, we can suggest the participation of both hydroxylic

end groups of PEG during the initiation of ROP. The presence of the phenyl ring

close to the polymerization active center of the 1/BnOH probably led to poorer

access of monomer molecules resulting in both the decrease of the polymerization

rate as well as the inhibition of side reactions.

Fig. 2 1H NMR spectrum of
PCL produced by 1/iPrOH in
CDCl3; polymerization
conditions: 60 �C,
chlorobenzene, 8 h. P(e-CL)
d = 1.15 and 1.17 ppm [s, 6H,
(CH3–)], d = 1.31 ppm [m, 2H,
(–CH2–)], d = 1.58 ppm
[m, 4H, (–CH2–)],
d = 2.24 ppm [t, 2H,
(–CH2CO–)], d = 3.58 ppm
[t, 2H, (–CH2OH)],
d = 4.00 ppm [t, 2H,
(–CH2O–)]

Fig. 3 1H NMR spectrum of
PCL produced by 1/PEG(400) in
CDCl3; polymerization
conditions: 60 �C,
chlorobenzene, 8 h. P(e-CL)
d = 1.31 ppm [m, 2H,
(–CH2–)], d = 1.58 ppm
[m, 4H, (–CH2–)],
d = 2.23 ppm [t, 2H,
(–CH2CO–)],
d = 3.57–3.59 ppm
[4H, (–CH2O–)], d = 3.74 ppm
[t, 2H, (–CH2OH)],
d = 4.00 ppm [t, 2H,

(–CH2O–)]
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Moreover, the triazole-based aluminum complex 1 produced the polymer

(Mn = 25,000, Mw/Mn = 1.5) in 6 h of polymerization performed under identical

conditions even in absence of alcohol initiator. However, the yields were very low

(of about 3–5%) with poor reproducibility, hence chain end-group NMR analysis

was not carried out. Most probably, the monomer insertion took place either in a

small portion of the aluminum-carbon(methyl) bonds or in Al–O bond of the ligand

sphere, which has been already reported for some complexes [19].

Furthermore, polymerization study focused on the promising system of benzyl

alcohol along with 1 as catalyst was performed in order to find the best conditions

for producing polymers with the well-defined molecular weight (consistent with

monomer to initiator ratio), predicted end groups, and a relative narrow

polydispersity (Mw/Mn B 1.2).

The 1H NMR spectra of the PCLs (Fig. 4) synthesized using ratio of

1/BnOH = 1/1 (Table 1) confirmed the presence of the methylene signals from

both benzylalkoxyl (d = 5.1 ppm) and hydroxyl (d = 3.63 ppm) chain ends, which

correlate well with the expected character of active species. Thus, we assumed that

the initiation step proceeds through a monomer insertion into the Al–O bond of the

aluminum benzylalkoxide intermediate, which is formed ‘‘in situ’’ with the

concomitant evolution of methane (Fig. 5). Monomer molecules are subsequently

cleaved in a way that maintains the growing chains having benzylalkoxide dead end

attached to the aluminum atom through an alkoxide bond. Consequently, the

quenching of these aluminum active bonds by hydrolysis results in the hydroxyl end

group.

Regarding the discrepancy between the actual values of molecular weights of the

polyesters and those determined by GPC using polystyrene standards, 1H NMR

Fig. 4 1H NMR spectrum of
PCL produced by 1/BnOH in
CDCl3; polymerization
conditions: 60 �C,
chlorobenzene, 8 h. P(e-Cl)
d = 1.27 ppm [m, 2H,
(–CH2–)], d = 1.63 ppm
[m, 4H, (–CH2–)],
d = 2.29 ppm [t, 2H,
(–CH2CO–)], d = 4.05 ppm
[t, 2H, (–CH2O–)],
d = 3.63 ppm [t, 2H,
(–CH2OH)], d = 5.10 ppm
[s, 2H, (–CH2OBn)],
d = 7.25 ppm [s, CDCl3]
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Table 1 Screening of ROP efficiency of 1

Run ROH t (h) Yielda (%) Mn
b (GPC) Mn

c (NMR) Mn
d (Theor.) Mw/Mn (GPC)

1 MeOH 8 88 53,000 25,000 20,000 1.8

2 iPrOH 8 81 42,000 16,000 18,000 1.7

3 OH-PEG-OH 20 85 37,000 25,000 20,000 1.5

4e BnOH 8 60 26,000 11,000 14,000 1.3

5e BnOH 8 66 24,000 11,000 15,000 1.2

6e BnOH 8 67 25,000 15,000 15,000 1.2

7e BnOH 8 67 24,000 9,000 15,000 1.2

Polymerization conditions: T = 60 �C, chlorobenzene, [e-CL]0 = 0.7 mol/L, [1]0/[ROH]0/[e-CL]0 =

1/1/200
a Isolated yield
b GPC values according PS standards
c Mn value was estimated by the 1H NMR spectrum based on the intensity of the methylene protons at the

PCL chain (d = 4.05 ppm) and that of protons derived from BnOH (d = 5.10 ppm) according to the

equation: MnðPCL) ¼ ðc=bþ 1Þ �Mðe-CL)½ � þMðBnOH), where c and b are the integral intensities of

peaks at 4.05 ppm and 5.1 ppm, respectively. In case of PCLn/PEG9/PCLn copolymer, the presence of one

PEG molecule per one copolymer molecule was assumed. In one PEG monomer unit (–CH2–CH2–O–),

there are four hydrogens, so the total number of hydrogens per one PEG molecule with polymerization

degree equal to 9 was calculated to be 36. Consequently, the signal integral for methylene protons of PEG

(d = 3.58 ppm) was set to represent 36 hydrogens. The intensity of the methylene protons at the PCL

chain (d = 4.00 ppm) was used to calculate relative number of PCL protons (2n) per one PCLn/PEG9/

PCLn copolymer molecule. Since the intensity signal at d = 4.00 ppm is related to only two hydrogens, the

ratio of signal integrals should be multiplied by 18 instead of 36. Molecular weight of the copolymer was

calculated according to the equation MnðPCL/PEG/PCL) ¼ ða=c� 18Þ �Mðe-CL)½ � þMðPEG), where

a and c are the integral intensities of peaks at 4.00 and 3.58 ppm, respectively
d Calculated from initial molar ratio [e-CL]0/[ROH]0 9 114.15 9 conversion yield, considering one

active alkoxide (RO-) group per Al complex. In case of OH-PEG-OH, the theoretical molecular weight of

triblock copolymer was calculated using the same equation, since the composition at quantitative con-

version is expected to be PCL100/PEG9/PCL100

e [e-CL]0 = 0.5 mol/L

Fig. 5 Suggested mechanism for the ROP initiated by 1/BnOH system
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spectra of the PCLs synthesized under identical conditions (60 �C, chlorobenzene,

8 h, [e-CL]0 = 0.5 mol/L) were used as well to determine their actual chain lengths

(Fig. 4). By comparison of Mn values obtained using GPC and those calculated from

certain intensities of the proton signals of PCL in NMR spectra [19], the correction

factor of 0.58 was estimated. Consequently, the values of Mn (GPC) of the PCLs

produced were multiplied by this factor to give the actual values denoted as Mn

(corr).

The evaluation of data from the runs performed simultaneously at the same

conditions (runs 4–7 in Table 1) confirmed a high reproducibility of PCL yields,

which was estimated to be of about 3%. However, the deviations of values of

molecular weight and polydispersity index determined by GPC method could be

ascribed to its accuracy.

To understand better the role of BnOH in the polymerization system, the different

ratios to 1 (0.5 and 2 equiv. to Al) were examined (see in Table 2). In the case of

the 0.5/1.0 ratio of BnOH/1, PCLs were obtained in high yield (92–93 %) after 6

and 8 h of polymerization (runs 4 and 5, respectively, in Table 2). The increase in

polydispersity (Mw/Mn C 1.6) can be ascribed both to the occurrence of side

reactions at high monomer conversions and to the participation of different active

species in the polymerization process. The aluminum complex 1 which was in

excess, could participate on the polymer chain growth along with the 1/BnOH

initiating system.

On the other hand, the polymerization with two equivalents of BnOH to 1 (Run 5

in Table 2) produced PCL in a low yield of only 21%. Taking into account the good

correlation between the theoretical and experimental molecular weights (calculated

according to the ratio of [e-Cl]0/[BnOH]0), we can suggest the benzyl alcohol

functions as a chain transfer agent. Reversible exchange of growing polymer chain

between BnOH and active aluminum-alkoxide center resulted in participation of all

Table 2 Effect of the Al-complex (1) to BnOH ratio

Run [1]0/[BnOH]0/

[e-CL]0

t (h) Yielda

(%)

Mn
b

(GPC-corr)

Mn

(NMR)

Mn
c

(Theor.)

Mw/Mn

(GPC)

1 1/0/200 6 3 15,000 n.a. – 1.5

2 1/1/200 6 45 11,000 9,000 10,000 1.2

3 1/1/200 8 67 15,000 14,000 15,000 1.2

4 2/1/200 6 92 12,000 17,000 21,000 1.6

5 2/1/200 8 93 15,000 n.a. 21,000 1.7

6 1/2/400 6 37 6,000 n.a. 8,000 1.1

7 1/2/400 8 21 3,000 4,000 5,000 1.4

Polymerization conditions: T = 60 �C, chlorobenzene, [1]0 = 0.003 mol/L, [e-CL]0 = 0.5 mol/L
a Isolated yield
b Corrected values in the brackets obtained according to the equation Mn(Corr) = 0.58 9 Mn (GPC)
c Calculated from initial molar ratio [e-CL]0/[BnOH]0 9 114.15 9 conversion yield, considering one

active benzoxide group per Al complex
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BnOH molecules in ROP initiation. Furthermore, the overall polymerization rate

decreased since the chain transfer reaction competed with the propagation step.

Moreover, the overall polymerization rate increased with the temperature

(Table 3). Every temperature increase by 10 �C in the range of 50–70 �C resulted in

almost a double increment with regard to the previous polymer yield. However, the

polydispersity increase at 70 �C (Mw/Mn = 1.8) indicated possible occurring

undesired transfer reactions. In the same manner, the increase on the original

monomer concentration in the polymer mixture caused higher yields accompanied

with lower control over the propagation step as expressed by a rise in the

polydispersity (Runs 3–5 in Table 3).

The conditions during which relative monodisperse PCLs (*1.2) were synthe-

sized were considered as 60 �C, initial concentration of e-CL equal to 0.5 mol/L,

and equivalent ratio of 1/BnOH = 1/1. The subsequent polymerization experiments

performed at selected conditions confirmed a living character of the process due to

both a linear dependency of Mn on conversion and a relative narrow polydispersity

of PCLs prepared (Mw/Mn = 1.2–1.3) (Fig. 6).

Regarding the synthesis of PCL with the lowest polydispersity index

(Mw/Mn = 1.1) at 40 �C, we can expect the proceeding of polymerization process

at 30 �C in the living manner as well. However, the polymerization period should be

prolonged over 24 h to obtain yields comparable with those produced at higher

temperatures.

On the basis of the results, ROP of e-CL catalyzed by the novel aluminum

complex 1 proceeded in a controlled manner with high catalytic efficiency under

optimized conditions producing PCLs with defined molecular weight. The catalytic

efficiency of 1/BnOH for ROP of e-CL at 60 �C and the excess of monomer of 200

to 1 estimated on the bases of [Mn(Theor.)/(Mn(NMR)] is close to 1, which is

comparable with the efficiencies of aluminum amine bis(phenolates)/BnOH under

similar conditions [12].

Table 3 Effect of polymerization temperature and initial concentration of e-caprolactone

Run T (�C) [e-CL]0
a Yieldb (%) Mnc (GPC-corr) Mn (NMR) Mn

d (Theor.) Mw/Mn (GPC)

1 40 0.5 5 3,000 n.a. 1,000 1.1

2 50 0.5 23 6,000 8,000 5,000 1.2

3 60 0.5 45 11,000 9,000 10,000 1.2

4 60 0.7 72 16,000 12,000 17,000 1.4

5 60 1.4 99 23,000 n.a. 23,000 1.8

6 70 0.5 95 16,000 17,000 22,000 1.8

Polymerization conditions: initial molar ratio [e-CL]0/[Al]0/[BnOH]0 = 200/1/1, chlorobenzene, activa-

tion period 30 min, [1]0 = 0.003 mol/L, t = 6 h
a Initial molar concentration of e-caprolactone [mol/L]
b Isolated yield
c Corrected values in the brackets obtained according to the equation Mn(Corr) = 0.58 9 Mn (GPC)
d Calculated from initial molar ratio [e-CL]0/[BnOH]0 9 114.15 9 conversion yield, considering one

active benzyl alkoxide group per Al complex
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Conclusions

In conclusion, an efficient system based on novel aluminum complex 1 and benzyl

alcohol for ROP of e-caprolactone was obtained. The living character of the

polymerization process was supported by the low polydispersity index (Mw/Mn =

1.2) of the PCL at certain conditions. Further details of the character of active

species and the relationship between the alkylgroup attached to the Al-complex and

the alcohol are under investigation.
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